
Comparative Evaluation of Algorithms for
Identifying Delay Arcs in Logic Circuits

Rita Louro Barbosa, Bernardo Borges Sandoval, Pedro Henrique Aquino Silva and Cristina Meinhardt
Department of Informatics and Statistics, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil

rita.louro.b@grad.ufsc.br, bernardoborgessandoval@gmail.com, pedro.aquino@posgrad.ufsc.br, cristina.meinhardt@ufsc.br

Abstract—The identification of delay arcs of a circuit is an
essential step in the simulation and design analysis of logic
circuits. This identification allows the measurement of delay times
in output state transitions given a change in a specific input. The
automation of this step is relevant for its potential to facilitate
the study of circuits with truth tables with a large number
of inputs and to speed up electrical characterization work in
adjacent research. This work provides a comparative evaluation
of two algorithmic alternatives for recognizing these arcs. The
evaluation metrics are: Complexity analyses, Runtime, Memory
and processor usage. The evaluation shows the advantage on
complexity for the second version of the algorithm, defined by
O(k log k), and the implications of this on runtime, memory
accesses and number of instruction for a set of benchmarks.

Index Terms—Cell characterization, Delay Arcs, Algorithm
Evaluation

I. INTRODUCTION

Cell characterization is a common task in the definition
of a Standard Cell library. With the advance of technology
nodes, more complex conditions must be considered when
defining the cells electrical behaviors. Traditional approaches
for cell characterization are based on electrical simulations that
represents a series of evaluation corners With the technology
evolution, more evaluation corners need to be considering
during the cell characterization step, mainly in nanometer
technologies [1]. Tools to execute the cell characterization are
included in commercial and some open source EDA flows [2]
[3] [4] [5]. However, the learning of how to execute a cell
characterization is briefly introduced in most computer science
or electronic engineering graduation courses. Knowing how to
identify the characteristics that will be abstract in the RTL level
as the delay of a cell is a relevant topic to students, mainly to
instigate the electrical-level evaluation or for the elaboration
of standard cell libraries.

There are few educational tools for microelectronics in the
literature [6] [7]. None of these tools, to the best knowledge
of the authors, explore the electrical characterization and
help young students acquire research interest in following
these integrated circuit design areas. Thus, this work is an
initial part of an educational project that aims to provide
open-source tools to help students understand the electrical
cell characterization steps and easily transpose the unknown
subject barrier. This initial work focuses on the algorithms to
find and identify the delay arcs from a Truth Table.

In this work, we present two algorithms to identify the delay
arcs from a logic function. These algorithms are evaluated in
terms of computational complexity and execution traces when
applied to a set of benchmarks composed of functions with a
growing number of inputs. This initial step of the educational
project is relevant to help students to understand the delay arcs
characterization and recognizing how the number of inputs
in a function impacts algorithms This knowledge is valuable
even for designers working at advanced abstraction levels of
integrated circuit design.

II. METHODOLOGY

The measurement of a circuit’s critical timing (delay) de-
pends on identifying all delay arcs of the function. Delay arcs
are defined by the transitions in the input vector (a transition
from input vector ’a’ to input vector ’b’) in which only one
entry changes and that change reflects a transition in the output
value. In the case of circuits with multiple inputs and outputs,
characterization and analysis of delays becomes a task with
scalar complexity proportional to the number of entries and
rows in the circuit’s Truth Table.

Given a circuit with n inputs, its complete Truth Table will
have 2n rows. Considering only Truth Tables without “don’t
care” representation, we consider four possible situations:
1) complete and ordered; 2) complete and unordered; 3)
incomplete and ordered; and 4) incomplete and unordered. A
complete Truth Table contains all 2n input vectors (rows). It
is considered ordered when the input vectors are positioned
following the binary sequence.

Now, thinking about the possibilities of arcs, the relation-
ships are bidirectional. That is, when a transition satisfies the
necessary conditions to be considered a delay arc, the opposite
transition will also satisfy the conditions, i.e., if (a, b) matches
the conditions, so will also arc (b, a). In this work, we evaluate
and compare two algorithms for finding the delay arcs. The
conditions for a pair of input vectors to be considered a delay
transition arcs are: 1) the input vectors in the pair present
different output values, and 2) the input vectors in the pair
has only one bit difference.

The algorithms were implemented using the Rust program-
ming language, version 1.72.0. The Truth Table structure was
created to store the data in a Truth Table. It contains the
following attributes: 1) A vector of output vectors to store
each row of the Truth Table corresponding to the outputs;



2) A vector of input vectors that stores each Truth Table
column corresponding to an input; and 3) the information on
the number of inputs, outputs, and Truth Table rows.

Both algorithms begin with the parsing of a Truth Table.
A Truth Table instance can be created through a function
called process_pla that extracts all required information
represented in a PLA file format.

A. Algorithm Find Arcs V1

The Algorithm Find Arcs V1 can be used in the four
possible situations presented before, i.e., with complete and
incomplete tables, which may or may not be ordered with
increasing sequences of input vectors. In this algorithm, the
truth table is interpreted in the sense of its input columns. The
value of each input must be stored individually in a vector and
will also be accessed separately inside the algorithm.

Fig. 1. Algorithm Find Arcs V1

The algorithm is presented in Fig. 1. The input is a vector
containing the output lines of the Truth Table (the structure
OL), a vector containing the input vectors (I) , and the output
number to be considered (n output). The algorithm returns
the set of transition arcs relevant to analyzing a circuit’s delays
in the format of a vector of tuples corresponding to the rows
of delay arcs on the truth table. Initially, the algorithm call the
auxiliary algorithm ”Generate Arcs” (line 2), presented in Fig.
2. This algorithm generates all bidirectional arcs (a, b) = (b, a)
with possible input vector pairs that will be after selected in
the algorithm Find Arcs V1.

The next step in Algorithm Find Arcs V1 is a loop from
lines 3-5 that will select the transition arcs from the generated
arcs that obey the first arc condition, i.e., presents a change
in the output. Then, from the remaining arcs, the loop form
lines 6 to 11 removes the pairs that does not obey the second
arc condition, i.e, change more than one bit in the input
vectors. This selection is made by summing the results of the
application of the XOR operation on the value of the arc’s
input vectors and subsequently checking this sum. If the result

Fig. 2. Auxiliary Algorithm Generate Arcs

is greater than 1, it means that more than one input changes
in this arc.

B. Algorithm Find Arcs V2

In this algorithm, the Truth Table is interpreted from the
perspective of the value of each row, taking advantage of the
fact that each input row (input vector) corresponds to the value
of an integer i ∈ [0, k − 1], k = 2n.

The V2 is presented in Fig. 3. This version receives as
input the same structures OL and n output used in the V1
Algorithm. In addition, it receives the number of Truth Table
inputs (n output). It returns the set of transition arcs relevant
to analyzing a circuit’s delays, in the format of a vector of
vectors. However, differently from the V1 algorithm, the V2
returns the numbers inside each vector corresponding to the
input vectors that form the transition arc when paired with the
number of the vector’s position. Initially, the algorithm calcu-
lates the total number of rows in the Truth Table. Differently
from the V1 that calls the auxiliary algorithm Generate arcs,
on the V2, the valid arcs are generate internally (lines 6-9),
checking the transition arcs conditions.

The current implementation of Algorithm V2 can only be
used for complete ordered truth tables. To solve this limitation,
an optimization of Algorithm 2 could consider include a
Hashmap to represent the output lines.

Fig. 3. Algorithm Find Arcs V2



III. COMPARATIVE EVALUATION OF THE ALGORITHMS

We begin discussing the algorithms through the code’s com-
putational complexity in Big O notation. This describes the
upper bound in computation time required to run an algorithm.
Time complexity is commonly estimated by counting the
number of elementary operations performed by the algorithm,
supposing that each elementary operation takes a fixed amount
of time to perform. After that, we also evaluate the algorithms
execution for a set of benchmarks, presenting execution time,
memory and processor usage. The experiments are executed
in a 64-bit Intel® Core™ i5-8265U CPU @ 1.60GHz with
Cache L1: 64 KB (per core), Cache L2: 256 KB (per core),
Cache L3 : 6 MB (shared) and 8 GB of RAM running Ubuntu
22.04.4 LTS.

A. Computational Complexity

We start the evaluation with the Auxiliary algorithm for
Generate Arcs, presented in Fig. 2. Eq. 1 shows the com-
plexity, considering that all assignments and vector insertions
have time complexity O(1). Thus, as the number of iteration
is equivalent to the number of total possible arcs in a Truth
Table with k lines. The total number of arcs can be found by
using the general formula for the sum of the terms of an AP,
where f is the total number of terms. In our case, k is the
number of rows in the Truth Table, a1 is the initial term (0),
and af corresponds to the last term , which is equal to k− 1.
Thus, the complexity of this auxiliary algorithm is defined as
O(k2).

Total =
(a1 + af )f

2
=

((k − 1) + 0)k

2
=

k2 − k

2
= O(k2) (1)

The computational complexity of Algorithm Find Arcs V1
is dependent on the complexity of the auxiliary Algorithm
Generate Arcs. So, as shown in Fig. 1, lines 3 to 5 are
O(k2). The loop between lines 6-11 is repeated for the same
maximum number of arcs. However, the internal loop defined
in the lines 8 and 9 runs in O(log k) over the number of
inputs of the Truth Table. Thus, this algorithm executes in
O(k2. log k).

Differently, the Algorithm Find Arcs V2 has the compu-
tational complexity dependent on the number of Truth Table
lines (k) and the number inputs of the Truth Table. The loop
between lines 3-9 interacts over the input vectors (k), thus
the complexity is O(k). The internal loop in lines 5-9 creates
all possible input vectors, corresponding to the number of
inputs of the Truth Table, with complexity O(log k). Thus,
the complexity of V2 is reduced to O(k. log k).

B. Performance evaluation

To evaluate the performance of the two algorithms, we
select a set of benchmark cases including functions with 3 to
10 inputs. The evaluations adopt open source profiling tools
available for Rust language integration, that allow running the
algorithms and collecting specific data about the execution. All
experiments considers executables compiled in release mode,
with the same optimization options set on the compiler.

The execution time is obtained from the Glassbench tool
[8]. The time report shows the average time from successive
runs for the same function from the benchmarks, to minimize
random dispersion. The time required for the initialization
of data structures and variables is not taken into account. In
addition, the execution of the algorithm has been isolated by
a function that prevents compiler optimizations for this part
of the code, avoiding interference in the results. Fig. 4 sum-
marizes the runtime report. Algorithm 1 showed accelerated
exponential growth, with runtime of 0.313 microseconds and
4.660 seconds, to 3 and 10 inputs, respectively. Algorithm
2, on the other hand, showed more balanced exponential
growth, with runtime limits of 0.272 microseconds and 54.3
microseconds for the same test cases. This represents a differ-
ence of 5 orders of magnitude between the highest result for
Algorithm 1 and the highest result for Algorithm 2. This result
reinforces the insight gained from the complexity analysis,
that the greater the number of inputs, the greater the time
complexity advantage of Algorithm 2 over Algorithm 1.

Fig. 4. Mean runtime of Find Arcs V1 and Find Arcs V2.

We adopt the Heaptrack tool [9] for the memory usage eval-
uation. In this evaluation, we are considering the data structure
and variables initialization. It is important to highlight that the
same TruthTable data structure is initialized before running
both algorithms, so we can assume that the discrepancies
between the memory usage results for each algorithm in the
same test case (same Truth Table) refer to the difference in
memory accessing sequences particularities of each algorithm.
Figures 5 and 6 shows the memory consumption for Algorithm
1 and 2, respectively. The memory usage differs between
the evaluated algorithms throughout the execution. Algorithm
1 maintained a low and stable growth rate according to
the increase on the number of inputs. The memory usage
accelerate from the test case with 8 inputs, peaking at 10
inputs, with consumption of 1.2 MB. On the other hand,
Algorithm 2 achieved a relatively more balanced growth in



memory consumption, reaching 149.5 kB in its largest test
case (function with 10 inputs).

Fig. 5. Memory consumption during the execution of Algorithm 1

Fig. 6. Memory consumption during the execution of Algorithm 2

Table I presents the number of instructions executed, the
number of access to the first level of cache (L1), to second
level of cache (L2) and to the RAM. These results are obtained
with the iai tool [10] that is an experimental benchmarking
harness that uses Cache grind to perform extremely precise
single-shot measurements of Rust code. We also present the
estimated number of cycles. Due to space limitations, in this
paper we opt to show the ratio relative comparison, considering
the Algorithm 2 as reference. Observing the relative compari-
son, Algorithm 1 runs less instructions, and has less memory
accesses than Algorithm 2 only for functions with 3 inputs.
For functions with 4 to 5 inputs, the Algorithm 1 show less L2
and RAM accesses, that could represent that in these cases, the
hit rate of L1 cache is higher for the Algorithm 1, increasing
the L1 accesses. For functions with more 5 inputs, Algorithm
1 increases significantly the number of instructions executes,
cycles required and memory accesses. It is a reflect of the
exponential behavior shown in the Algorithm 1 complexity
evaluation.

IV. CONCLUSION

The comparative evaluation performed in this work sug-
gest a notable advantage in the estimated complexity, time

TABLE I
RELATIVE COMPARISON OF PROCESSOR, CACHE AND MEMORY USAGE

CONSIDERING ALGORITHM 2 AS THE REFERENCE

Number
of Inputs Instructions L1

Accesses
L2

Accesses
RAM

Accesses
Estimated

Cycles
3 0.99 0.98 0.88 0.98 0.98
4 1.2 1.11 0.90 0.97 1.09
5 1.59 1.59 0.88 0.97 1.53
6 3.22 3.38 1.07 1.11 3.25
7 96.57 198.22 1.71 1.32 190.90
8 954.76 2021.08 15178.37 1.96 1987.50
9 8399.48 17876.78 62492.32 4.78 17832.97

10 53813.13 112432.07 317829.02 9.44 112951.71

efficiency and memory consumption for Algorithm 2 over
Algorithm 1. Algorithm 1 is currently an option to unsorted
Truth Table, however, with the future Hashmap optimization,
Algorithm 2 will bring advantages for all cases. Next steps on
this research includes defining the minimal simulation steps
required to execute electrical simulations and obtain the delay
and power electrical characterization for a given Truth Table.
Thus, the develop algorithms will be integrated in an open-
source educational tool to help students to understand the cell
characterization process.

ACKNOWLEDGMENT

This work was financed in part by CNPq and the
Propesq/UFSC.

REFERENCES

[1] Tianliang Ma, Zhihui Deng, Xuguang Sun, and Leilai Shao. Fast cell
library characterization for design technology co-optimization based on
graph neural networks. In 2024 29th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 472–477, 2024.

[2] Library Characterization and Optimization - Silvaco — silvaco.com.
https://silvaco.com/library-characterization-optimization/ . [Accessed
30-05-2024].

[3] What is Library Characterization? – How it Works & Techniques —
Synopsys — synopsys.com. https://www.synopsys.com/glossary/what-
is-library-characterization.html. [Accessed 30-05-2024].

[4] Liberate Trio Characterization Suite — cadence.com.
https://www.cadence.com/en US/home/tools/custom-ic-analog-rf-
design/library-characterization/liberate-trio-characterization-suite.html.
[Accessed 30-05-2024].

[5] Kronos Characterizer resources.sw.siemens.com.
https://resources.sw.siemens.com/en-US/fact-sheet-kronos-characterizer.
[Accessed 30-05-2024].

[6] G. Mishuris L. Brooks C. McLean V. Chan J. A. del
Alamo, J. Hardison and L. Hui. Educational experiments
with an online microelectronics characterization laboratory.
https://mtlsites.mit.edu/users/alamo/pdf/2002/RC-91 [Accessed 30-
05-2024].

[7] Samuel J. Dickerson and Renee M. Clark. A classroom-based
simulation-centric approach to microelectronics education. Computer
Applications in Engineering Education, 26(4):768–781, June 2018.

[8] GitHub - Canop/glassbench: A micro-benchmark framework to use
with cargo bench — github.com. https://github.com/Canop/glassbench.
[Accessed 31-05-2024].

[9] GitHub - KDE/heaptrack: A heap memory profiler for Linux —
github.com. https://github.com/KDE/heaptrack. [Accessed 31-05-2024].

[10] GitHub - bheisler/iai: Experimental one-shot benchmarking/profiling
harness for Rust — github.com. https://github.com/bheisler/iai. [Ac-
cessed 31-05-2024].


